
August 1999 The Delphi Magazine 57

The Delphi
CLINIC

Edited by Brian Long

Problems with your Delphi project?

Just email Brian Long, our Delphi
Clinic Editor, on clinic@blong.com

Explorer Dialog Problem

QI am writing a Delphi 3 pro-
ject that uses DLLs to pro-

vide custom functionality. The
name of the current DLL in use is
stored in a database and I use a
TOpenDialog to let the user select
which DLL to use. My problem is
that when the user’s machine has
the Hide files of these types: op-
tion selected in Windows Explorer,
DLLs do not show up in a
TOpenDialog. Is there any way to get
the dialog to ignore the Explorer
setting? This may not be possible
but it would save me duplicating
functionality by writing my own
dialog.

ASince a TOpenDialog actually
displays Windows Explorer,

to allow you to navigate around the
machine, then it could be difficult
to accomplish what you want.
Personally, I would use a custom
extension, rather than *.DLL, some-
thing like *.MOD. Delphi 3 (and later)
offer a project option to specify the
file extension of the compiled out-
put file. It corresponds to the $E
compiler directive used in the
project file.

Home Grown SQL Monitor

QIs there a documented way
of getting at the same

information that the SQL Monitor
lists? I would like to have an SQL
trace window in my program,
rather than having to use the SQL
Monitor program, which I am not
allowed to distribute with my
application.

AYou make an important
point in your second sen-

tence. On the one hand it might be
more desirable to have a trace

window actually resident in your
application, rather than in a sepa-
rate one. However, on the other
hand, if you want a trace of the SQL
operations in a deployed applica-
tion, you have little choice but to
implement this yourself since
Inprise do not permit you to dis-
tribute the SQL Monitor. One way
around this legal problem would
be to write your own SQL Monitor.
Enough information is present in
the VCL to work out how to do
exactly this. More on this subject
later...

Way back in 1996, I showed how
the 16-bit BDE could be enticed
into generating trace messages for
all its SQL operations in the Tracing
SQL entry from Issue 6’s Delphi
Clinic. This described setting
would make the BDE generate
debug strings that could be picked
up with an appropriate notification
tool, or a debug terminal.

The 32-bit BDE introduced a new
callback specifically designed for
picking up these trace messages. A
BDE callback is a routine that you
ask the BDE to execute whenever
certain events happen. Delphi 2
introduced a TBDECallback class
designed, as the name suggests, to
wrap up a BDE callback. The new
callback is described with the
constant cbTRACE.

I talked about 16-bit BDE
callbacks in Issue 5 in Please Call
Later... Callbacks in Windows and
the Borland Database Engine (Part
2). 32-bit BDE callbacks use much
the same principles, but have
changed in various ways. The best
way to deal with these callbacks is
to use the TBDECallback class and
feed it with appropriate informa-
tion gleaned from reading the BDE
API help file (which you should find
in your BDE directory as file
BDE32.HLP). Note that all the BDE

routines, types and constants are
declared in the BDE unit in Delphi 2
onwards.

This help file stresses the
following about using BDE
callbacks: the routine that you ask
the BDE to call when the event in
question occurs must not call any
other BDE routine: the BDE is not
re-entrant during a callback.

As it turns out, if you digest the
help file information, the callback
is reasonably easy to set up. It also
works rather nicely in applications
developed in Delphi 3 and 4. Delphi
2 causes irritation when testing the
application. The callback only
works if you run the application
from outside the environment, due
to issues housed within its compo-
nent library. We’ll come back to
why this happens later.

When you construct a TBDE-
Callback, you pass it an owner
object (which isn’t used) and a
BDE cursor handle (if relevant,
which in this case it is not). You
also pass the callback type
(cbTRACE), and a callback
descriptor. The descriptor is call-
back type dependent, and the
memory for it is managed by your
application. This descriptor is
passed to your callback method
when the BDE triggers it. Finally,
you tell the callback object if you
wish to replace any installed call-
back of this type, or augment it
(chain onto it).

The signature of the callback
method (or event handler) is dic-
tated in the help. The event type is
defined as:

TBDECallbackEvent =
function(CBInfo: Pointer):
CBRType of object;

Many callbacks pass meaningful
return values back to tell the BDE

58 The Delphi Magazine Issue 48

how to proceed, but the trace
callback return value is ignored.

The sample application on this
month’s disk that shows the idea is
called (unimaginatively perhaps)
SQLTrace.dpr. It has a table,
datasource and data-aware grid, all
prepared to show a table from the
sample InterBase database
(thereby generating SQL instruc-
tions). A checkbox on the form
allows you to open and close the
table using the Active property,
and of course you can edit the table
with the grid, to provoke more SQL
activity.

The BDE callback object is
stored in a data field defined in the
form called FSQLTraceCallBack. The
callback event handler is a routine
called SQLTraceFunction and simply
wants to add whatever string
comes along into a listbox. The
trace string is supplied by the BDE
in the callback descriptor, whose
address is passed along to the

event handler. The trace callback
descriptor is a record of type
TRACEDesc, defined in the BDE unit
as:

TRACEDesc = packed record
{ trace callback info }
eTraceCat : TRACECat;
uTotalMsgLen : Word;
pszTrace :
array [0..0] of Char;

end;

This contains the category of the
item described, the length that the
trace message should be, and the
message itself. Since you are
responsible for allocating memory
for this descriptor, whose last field
can be as long as you choose to
make it by allocating sufficient
memory, the message length field
can tell you if the string was
truncated. The BDE help file rec-
ommends you allocate enough
space so the last text field of the
record has DBIMAXTRACELEN (8,192)
characters to play with.

The program’s call descriptor is
stored in a data field called
FTraceBuffer, and GetMem is used to
allocate space for it, before giving
it to the TBDECallback. Just before
this happens, the Session object
has its TraceFlags properties set.
This property is a set property and
can be used to specify which oper-
ations will generate trace mes-
sages, much like the trace options
in the SQL Monitor.

The program duplicates the SQL
Monitor checkboxes, each of
which has a Tag property set with
the corresponding constant
defined in the BDE (as passed in
the eTraceCat field of the TRACEDesc
record). GetTraceFlags is a handy
routine that loops through these
checkboxes, which are sitting in a
group box, and tots up the Tag
property values of those which are
checked. This gives the value that
the BDE wants, which is a simple
number made out of bit mask
values. However, as was men-
tioned, the VCL uses a set property
instead.

The values in the enumerated
type used by the set have been laid
out such that their representative
values when used in a set directly
match the corresponding BDE con-
stants. Small sets are implemented
using sequential bits in a
word-sized storage area. In other
words, the first enumerated type
value matches the constant with a

//From DBTables.pas
type
TTraceFlag = (tfQPrepare, tfQExecute, tfError, tfStmt, tfConnect,
tfTransact, tfBlob, tfMisc, tfVendor, tfDataIn, tfDataOut);

TTraceFlags = set of TTraceFlag;
//From BDE.pas
const
traceQPREPARE = $0001; { prepared query statements }
traceQEXECUTE = $0002; { executed query statements }
traceERROR = $0004; { vendor errors }
traceSTMT = $0008; { statement ops (i.e. allocate, free) }
traceCONNECT = $0010; { connect / disconnect }
traceTRANSACT = $0020; { transaction }
traceBLOB = $0040; { blob i/o }
traceMISC = $0080; { misc. }
traceVENDOR = $0100; { vendor calls }
traceDATAIN = $0200; { parameter bound data }
traceDATAOUT = $0400; { trace fetched data }

➤ Listing 1

TTraceForm = class(TForm)
...
private
FTraceBuffer: PTraceDesc;
FSQLTraceCallBack: TBDECallBack;
function GetTraceFlags: TTraceFlags;
function SQLTraceFunction(CBInfo: Pointer): CBRType;

end;
...
procedure TTraceForm.FormCreate(Sender: TObject);
begin
//Give listbox a horizontal scroll bar
SendMessage(lstTrace.Handle, lb_SetHorizontalExtent,
2000, 0);

//Set session trace flags
Session.TraceFlags := GetTraceFlags;
//Initialise BDE before trying to install callback
Session.Open;
//Allocate callback descriptor
GetMem(FTraceBuffer, SizeOf(TRACEDesc) + DBIMAXTRACELEN);
//Install BDE callback
FSQLTraceCallBack := TBDECallBack.Create(nil, nil,
cbTRACE, FTraceBuffer, SizeOf(TRACEDesc) +
DBIMAXTRACELEN, SQLTraceFunction, True);

end;
procedure TTraceForm.FormDestroy(Sender: TObject);
begin
//Uninstall BDE callback
FSQLTraceCallBack.Free;
FSQLTraceCallBack := nil;

//Deallocate descriptor
FreeMem(FTraceBuffer);
FTraceBuffer := nil;

end;
procedure TTraceForm.chkTableOpenClick(Sender: TObject);
begin
Table1.Active := chkTableOpen.Checked

end;
function TTraceForm.GetTraceFlags: TTraceFlags;
var
I, TraceValue: Integer;

begin
TraceValue := 0;
//Get Tag values of checked checkboxes
for I := 0 to TraceCategories.ControlCount - 1 do
if TraceCategories.Controls[I] is TCheckBox then
if TCheckBox(TraceCategories.Controls[I]).Checked then
Inc(TraceValue, TraceCategories.Controls[I].Tag);

//Turn number into set
Result := TTraceFlags(Word(TraceValue))

end;
function TTraceForm.SQLTraceFunction(CBInfo: Pointer):
CBRType;

begin
//Set a result to avoid warning, even though it is ignored
Result := cbrUSEDEF;
lstTrace.Items.Add(StrPas(PTraceDesc(CBInfo).pszTrace));

end;

➤ Listing 2

60 The Delphi Magazine Issue 48

value of 1 (or 20). The second one
matches the constant whose value
is 2 (or 21). The third matches the
one valued 4 (or 22), and so on (see
Listing 1).

Each time a checkbox is
checked, the GetTraceFlags routine
is called again to update the BDE
session’s TraceFlags property.

Listing 2 shows all the other
code that has been described so
far, which doesn’t really leave
anything else in the program to
explore. Figure 1 shows a
screenshot of the application
running, tracing an application’s
manipulation of an InterBase table.

In addition to this application’s
custom BDE callback, the VCL
installs several callbacks of its
own. Any TSession object installs a
login callback, a server call call-
back (to set the SQL cursor when
connecting to a server), a cached
update callback, and an SQL trace
callback of its own (which is worth
further investigation). If the ses-
sion is in a DLL, a dedicated
detachment notification callback
is also installed.

Going back to the session’s own
SQL trace callback, you might
wonder what it does. Well, it is
what makes the SQL Monitor work.
The SQL Monitor cannot plug in to
your application’s BDE session, so
your program locates the SQL
Monitor (if running) and sends it all
the messages to display.

The SQL Monitor uses a small
DLL (SMClient.Dll) that is accessed
in one way or another by Delphi
applications to get the information
to display. Delphi 2 relies upon the
fact that this DLL sets up a memory

mapped file called
SMClientLib containing the
fully qualified path to itself.
A Delphi 2 app reads the
DLL name, loads it into
memory, locates the
RegisterClient routine
exported by the DLL and
calls it. This tells the DLL
that a new application is
registered and also gives
the SQL Monitor a routine
to call when the user
changes the trace option
checkboxes. The routine
simply resets the session’s
TraceFlags property to
match what the user asks
for. When RegisterClient
returns, the application is given
the address of a routine in the SQL
Monitor to call with trace
messages.

One minor issue worth noting is
that you will not be able to trace
messages with a custom callback
written in a Delphi 2 application, if
Delphi 2 is running. The compo-
nent library appears to open up
SMClient.Dll and keep it open. This
allows the program to locate the
memory mapped file, locate the
DLL path, reload the DLL and get a
procedure address for passing
trace messages to. However, when
the program tries to call the rou-
tine, it will fail since the DLL was
not loaded by the SQL Monitor
itself. The failure causes the VCL to
set the session’s TraceFlags
property to an empty set.

Delphi 3 introduced Delphi COM
support and SMClient.Dll was
rewritten as an in-process COM
server. A COM object in the DLL

implements the
ISMClient interface
defined in the SMIntf
unit (present in the
VCL source direc-
tory). The unit also
defines the COM
object’s class ID
to enable Delphi

applications to get access to its
interface. This interface defines
both the RegisterClient routine
and also the AddStatement method,
which is called to pass trace mes-
sages to the SQL Monitor. A Delphi
3 (and upwards) application
checks that the COM server DLL
has set up a memory mapped file
called SMBuffer (although it
doesn’t check the contents), then
connects to the COM object
contained within.

With all this information, you
should be able to see that it is now
more than possible to write a
standalone SQL trace application,
in exactly the same way as the SQL
Monitor works. All you need is a
main application that allows the
user to set trace options, and can
list trace messages, and a COM
server DLL that implements the
ISMClient interface.

To prove the point (more to
myself than anyone else really), I
spent a while developing just such
an application. The design goals
were to provide functionality
similar to Borland’s original SQL
Monitor, but it should be able to
pick up trace messages from any
32-bit BDE application. In other
words, it needs to provide an
appropriate COM object for Delphi
3 and later, as well as standard
exported routines for Delphi 2. In
addition, it should have no

➤ Figure 1: A BDE callback
allows us to trace SQL
operations.

➤ Figure 2: You can
write a new SQL
Monitor without
writing a BDE
callback.

62 The Delphi Magazine Issue 48

limitations on its distribution,
unlike the original that it is based
upon.

The SQL trace application is
called Monitor.dpr and the sup-
port DLL is called MonLib.dpr. The
DLL is explicitly loaded by Moni-
tor.Exe when it starts up, and
unloaded when the program closes
down. The DLL, for its part, sets up
the two previously mentioned
memory-mapped files. SMClientLib
has the path to the DLL placed in it,
and SMBuffer is used to store a
trace message in, before telling the
application to add it to its listbox.
The application and the DLL

communicate with each other via
Windows messages.

In order for the DLL and the mon-
itor program to communicate, the
DLL has a non-visible form in it to
receive messages. The DLL broad-
casts a message to announce its
presence when it is loaded by any
application (including the moni-
tor) passing along this form’s
window handle. The monitor picks
up this message and sends a mes-
sage back to the specified window
handle indicating its own main
form handle.

Whenever a client application’s
BDE signals a trace message is

available through its callback, the
DLL copies the message into the
SMBuffer memory mapped file and
sends a message to the monitor to
prod it into adding it to its message
list. When the user changes the
state of any of the trace option
checkboxes, the monitor broad-
casts a dedicated message around
(there are potentially many DLLs
that need to know) and each DLL
calls the signal procedure in each
of its clients. This signal routine
was passed in when the client
registered itself.

The DLL exports the required
RegisterClient routine, and if it is

Windows Functionality
When Windows 95/98 displays a dialog offering you the
chance to restart Windows (for example, after changing
some Control Panel settings, or when choosing Startmenu,
Shut Down...), holding down Shift whilst pressing the Yes
button will usually cause Windows to close and restart
without the usual reboot.

To access the Properties dialog of any item being dis-
played in Windows Explorer (which includes items sitting on
your Windows desktop), as well as the usual right-clicking
and choosing Properties, you can hold down Alt and
either press Enter or double-click.

When you drag an item from one folder to another in
Windows Explorer, depending upon the type of item and
where you are dragging from or to, you tend to find that
the item may be copied, moved, or a shortcut to it might be
created. If you want to dictate the end result of your drag,
bear in mind that Ctrl+drag will copy, Shift+drag will
move, whilst Shift+Ctrl+drag will create a shortcut.

On a similar vein to the above point, if you drag an item
with the right mouse button instead of the left mouse
button, you get a popup menu of options that allows you to
choose which operation will occur. The one that would
have occurred (with a left drag) will be shown in bold (the
default menu item).

Right clicking on a file in Windows Explorer gives a menu,
typically starting with Open. This menu item will open the
file in the default way, typically using the application associ-
ated with that type of file. If you hold Shift down when
you right click, you should get an extra Open With... item
that allows you to choose which application will open the
file. To give a simple example of why you might want to use
this, you could open a Delphi unit in Notepad, instead of
waiting for the default associated application (ie Delphi) to
start up and open it.

On a related theme to the above item, when you right
click on a file displayed by Windows Explorer, there is a Send
Tomenu. In this menu, there are a number of variably useful
menu items. It is easy to add new entries to this menu, any
application can be added such that it will be passed the file
name as a command-line parameter. For example, you may
wish to add Notepad in there, so you can easily load any text
file (regardless of file extension) into Notepad. Locate the
Send To folder, which can be found under your Windows
folder, and make a shortcut to your target application
(NotePad.exe in this case). If you want to rename it, then do

so. Now when you right click on a file and choose Send
To, your target program will now be listed and ready for
use. Note that on Windows 95, Send To is directly under
Windows. On Windows 98 and NT, you will need
to explore a bit further. For example, on NT, Send To
and Desktop are all replicated for each user under the
Profiles subdirectory.

A variant on the previous item’s theme is to make
Notepad be automatically on the context menu for any
file with or without a default file association. This
means that a non-standard file can be sent to Notepad
without even going to Send To.

Launch RegEdit.Exe and navigate to
HKEY_CLASSES_ROOT\Unknown. Add a new key called
Shell under Unknown. Add another key under Shell
called Notepad, and another key under Notepad called
Command. In the Command key, there will be a string item
called Default. Double-click it and give it a value of
NOTEPAD %1. A .REG file with the following contents
would have the same effect if you double-clicked it in
Windows Explorer:

REGEDIT4
[HKEY_CLASSES_ROOT\Unknown\shell\Notepad\
Command]

“Notepad %1"

If, like me, you are not blessed with the ability to touch
type, you probably get irritated when you accidentally
turn Caps Lock on, without noticing. Of course it is not
too much of a problem if you are typing in Delphi’s
editor at the time, as you can use Ctrl+O, Ctrl+U to
toggle the case of a selected block. Leaving out this spe-
cific case, there is more help at hand from 32-bit Win-
dows. In Control Panel, choose Add/Remove Programs
and use the Windows Setup tab to ensure Accessibil-
ity Options are installed. Now choose Accessibility
Options from Control Panel. On the Keyboard tab, make
sure Use ToggleKeys is checked. Now, whenever Caps
Lock, Num Lock or Scroll Lock is toggled on or off, your
PC will make a high or low-pitched beep respectively.

I hope you find these tips useful: Windows can
usually do much more than we ever get around to
finding out!

64 The Delphi Magazine Issue 48

Windows Key Plus... Function Equivalent Way To Access Functionality

E Windows Explorer Start | Programs, Windows Explorer

F Find Files or Folders Start | Find, Files or Folders...

Ctrl+F Find Computer Start | Find, Computer...

M Minimise All Right-click on task bar, Minimize All Windows

Shift+M Undo Minimise All Right-click on task bar, Undo Minimize All

R Run dialog box Start | Run...

F1 Windows Help Start | Help

Tab Cycle through taskbar buttons. Press
Enter to select the application you want

None, but similar to Alt+Tab

Break System Properties dialog box Right-click on My Computer, Properties,
or use Control Panel

compiled in Delphi 3 or 4 also
includes units needed to define
and implement the COM object.
This implements the interface as
specified in the SMIntf unit, and
duplicates the class ID declared in
that unit. The implementation of
the COM object maps down to calls
to the RegisterClient routine and
the routine that is given to Delphi 2
clients to call when a new trace
message needs to be added to the
list.

I’ll leave any more ambitious
examination of the code to your-
selves, and will just mention that if
the DLL project is compiled in
Delphi 2, it will service Delphi 2
clients. If compiled in Delphi 3 (or
later), will service Delphi 3 (or
later) clients.

Do remember that you will need
to register the COM server DLL (in

➤ Table 1

Windows Key Plus... Function

L Log off Windows

P Print Manager

C Control Panel

V Clipboard Viewer (if installed)

K Keyboard Properties dialog box

I Mouse Properties dialog box

A Accessibility Options (if installed)

Space Displays the list of IntelliType Hotkeys

S Toggles CAPS LOCK on and off

Delphi 3 or later). This can be done
from the Run menu, or using the
TRegSvr command-line tool sup-
plied with Delphi. Figure 2 shows
the application running with trace
messages coming in from another
application.

Windows Miscellany

QThis is not a Delphi question,
but I thought you might

know the answer anyway. What is
the point of that irritating Windows
key on my keyboard? All it seems
to do for me is to take focus away
from the application I am typing
into, and bring up the Start menu
when I accidentally press it instead
of pressing Alt or Ctrl.

AThis question has arisen on
a number of the training

courses that I have conducted and
so I feel it is worth looking at

briefly. After all, Windows users re-
ally should have the benefit of
knowing what is on offer such that
they can then make a balanced
judgement of whether to use or to
ignore the available facilities.

As you have already seen, press-
ing and releasing the Windows key
(the one with theÿ picture on it)
on its own will pop up the Start
menu. However it can also be used
in conjunction with other keys as
well. You can hold down the Win-
dows key, press another key, then
release that key and finally release
the Windows key (in other words it
is used in a similar way to Ctrl and
Alt, which probably explains why
it is placed where it is on the key-
board). Table 1 shows the keys
that it works with on Windows 95,
Windows 98 and Windows NT 4
and above. You can see that it gen-
erally provides a shorthand mech-
anism to navigating through the
Start menu, or manipulating the
task bar.

I cannot confirm this next point,
not having the relevant software
available to me, but I have read
that if Microsoft IntelliType is
installed, the Windows key also
works in conjunction with the keys
shown in Table 2.

Before leaving the subject of
lesser known Windows functional-
ity, see the sidebar included on
page 62 which contains some of my
favourite Windows usage tips.

➤ Table 2

	Explorer Dialog Problem
	Home Grown SQL Monitor
	Windows Functionality
	Windows Miscellany

